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Multiple particle-hole pair creation in the harmonically driven Fermi-Hubbard model
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We study the Fermi-Hubbard model in the strongly correlated Mott phase under the influence of a harmonically
oscillating hopping rate J (t) = J0 + !J cos(ωt). Apart from the well-known fundamental resonance, where the
frequency ω of this oscillation equals (or a little exceeds) the Mott gap, we also find higher-order resonances where
multiple particle-hole pairs are created when ω is near an integer multiple of the gap. These findings should
be relevant for experimental realizations such as ultracold fermionic atoms in optical lattices or pump-probe
experiments using laser pulses incident on correlated electrons in solid-state materials.
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I. INTRODUCTION

Understanding interacting quantum many-body systems is
a major challenge in physics—both from the theoretical and
the experimental point of view. One reason is the complexity
of these systems, as reflected in the dimension of the Hilbert
space, which grows exponentially with the particle number.
As a result, it can already be very difficult to determine the
equilibrium (e.g., ground state) properties of such systems, but
it can be even more challenging to understand their dynamics
out of equilibrium. Interesting questions in this context are:
How do interacting quantum many-body systems react to an
external stimulus which drives them out of equilibrium, and
how do they relax back?

In this paper, we focus on the first part of that question. As a
prototypical example, we consider the Fermi-Hubbard model
[1] (h̄ = 1)

ĤFH = −J
∑

⟨µ,ν⟩,s
ĉ†µ,s ĉν,s + U

∑

µ

n̂↑
µn̂↓

µ. (1)

Here ĉ
†
µ,s and ĉν,s are the fermionic creation and annihilation

operators at the neighboring lattice sites µ and ν with the
spin s while n̂s

µ is the corresponding number operator. Even
though it might seem quite simple, this model (1) displays
highly nontrivial effects due to the competition between the
two (noncommuting) contributions, the hopping rate J , and
the on-site repulsion U . Here, we consider symmetric lattices
where all lattice sites µ and all neighboring pairs µ and ν are
equivalent.

Depending on lattice structure, temperature, and filling
(doping), etc., the Fermi-Hubbard model (1) has a rich phase
diagram. We focus on a corner of this phase diagram—
the strongly correlated Mott insulator phase at zero temper-
ature and half filling ⟨n̂↑

µ⟩ = ⟨n̂↓
µ⟩ = 1/2. Thus, we assume

that the hopping rate J is much smaller than the on-site
repulsion U . Apart from small quantum corrections (due to
“virtual” hopping processes), the ground state has one particle
per lattice site as double occupancy costs an energy penalty of
U . This state is insulating with a Mott gap of approximately U ,
up to corrections of order O(J ) or higher due to these virtual
hopping processes which lower the energy.

Starting with the Mott insulator state as the initial ground
(equilibrium) state, we study how the Fermi-Hubbard model
(1) reacts to an external stimulus J (t). A frequently stud-
ied and conceptually clear example is a quantum quench,

which denotes the following sequence: The system starts in
the ground (or thermal equilibrium) state and one of the
parameters such as the hopping rate J is changed suddenly
J (t) = Jin + !J$(t) where $(t) is the Heaviside step func-
tion. After that, the system is no longer in its ground or equi-
librium state in general. The subsequent real-time evolution
including phenomena like decaying oscillations [2] and the
different stages of relaxation [3–5] such as prethermalization
and thermalization [6–9] and the spreading of correlations [10]
have been studied in various works.

In the following, we consider a different stimulus J (t) and
assume an oscillating profile

J (t) = J0 + !J cos(ωt), (2)

which is often studied in the context of driven quantum
systems, e.g., regarding the creation [11] or directed motion
[12,13] of doublons and holons or new nonequilibrium phases;
see also [14]. Depending on the experimental realization, such
an oscillating hopping rate could be generated by periodic
modulations of external parameters such as pressure, magnetic
or electric field, etc. For atoms in optical lattices, such a J (t)
can be induced by varying the laser intensity or by shaking
the lattice. In pump-probe spectroscopy, J (t) can represent the
impact of the pump beam on the investigated material system;
see the Appendix.

Since both J0 and !J are supposed to be small in
comparison to U (deep in the Mott phase), the reaction of the
quantum system, i.e., the departure from equilibrium caused
by the external stimulus, will be most pronounced for resonant
excitation. Naively, one might expect that this excitation
mechanism is only effective if the driving frequency ω equals
(approximately) the Mott gap U + O(J ) which corresponds
to the energy needed to create one particle-hole pair. While
this fundamental resonance is most efficient in general, we
also find higher-order resonances where the driving frequency
ω equals (approximately) the energy of two or more pairs.

II. PAIR CREATION

Let us first study the well-known fundamental resonance.
As one way to understand this process, let us employ the
method of the hierarchy of correlations. This approach is
described in [15–17] and particularly adapted to the treatment
of nonequilibrium phenomena in strongly correlated lattice
systems. To this end, we consider the reduced density matrix
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FIG. 1. Connectivity diagrams of the considered lattice geome-
tries: a tetrahedron as 3D representation (top left) and as planar
diagram (top middle); a square (top right); and fully permutationally
invariant lattices with six sites (bottom left) and with eight sites as
planar diagram (bottom middle) and as 3D representation (bottom
right).

ϱ̂µ of one lattice site µ and analogously ϱ̂µν for two
lattice sites µ and ν, etc. Separating the correlated part via
ϱ̂µν = ϱ̂corr

µν + ϱ̂µϱ̂ν , we may derive the evolution equations for
∂t ϱ̂

corr
µν , etc. To lowest order, the ground state (Mott insulator)

restricted to two lattice sites can be represented by the
equipartition state |↑,↓⟩µν = ĉ

†
µ,↑ĉ

†
ν,↓|0⟩ while the state with

a doublon-holon excitation at these two sites can be written
as |↑↓,0⟩µν = ĉ

†
µ,↑ĉ

†
µ,↓|0⟩. Calculating the matrix element of

ϱ̂corr
µν (t) between these two states, we find

⟨↑↓,0|(i∂t − U )ϱ̂corr
µν (t)|↑,↓⟩ = J (t)M(2)

µν, (3)

where M(2)
µν denotes a matrix element containing the on-site

matrices ϱ̂µ and ϱ̂ν ; for example, cf. [15–17]. Evidently, if
J (t) oscillates with the frequency ω = U + O(J ), we would
get a resonant growth of ϱ̂corr

µν (t) corresponding to particle-hole
(doublon-holon) pair creation.

A. Double pair creation

As mentioned above, the well-known fundamental reso-
nance condition ω = U + O(J ) is not the only possibility.
As we demonstrate below, for ω = 2U + O(J ), one could
resonantly create two particle-hole pairs at the same time, for
example. This effect can be understood analogously in terms
of the four-point correlator ϱ̂corr

µνλσ the matrix element of which
obeys the equation

⟨↑↓,0,↑↓,0|(i∂t − 2U )ϱ̂corr
µνλσ (t)|↑,↓,↑,↓⟩ = J (t)M(4)

µνλσ .

(4)

The remaining matrix element M(4)
µνλσ contains products of

two-point correlations such as ϱ̂corr
µν ϱ̂corr

λσ . Thus, we necessarily
obtain resonant creation of two particle-hole (doublon-holon)
pairs at the same time—unless the source term M(4)

µνλσ

vanishes identically.
In order to show that this source term is nonvanishing,

let us consider a simple and exactly solvable case—the
Fermi-Hubbard model (1) on a tetrahedron (see Fig. 1), i.e.,
two spin-up plus two spin-down fermions on four lattice
sites with full permutation invariance. For vanishing hopping

J = 0, the ground state |ψground⟩ is the fully symmetrized
state |ψground⟩ = |↑,↓,↑,↓⟩symm which we shall denote by
|φ0⟩ = |↑,↓,↑,↓⟩symm. Analogously, the first excited state
reads |ψfirst⟩ = |↑↓,0,↑,↓⟩symm which will be abbreviated
by |φ1⟩ = |↑↓,0,↑,↓⟩symm. Finally, the second excited (i.e.,
highest-energy) state is |ψsecond⟩ = |↑↓,0,↑↓,0⟩symm and will
be denoted by |φ2⟩ = |↑↓,0,↑↓,0⟩symm.

In this case J = 0, the matrix element ⟨φ2|Ĥ!J |φ0⟩ between
the lowest- and highest-energy state would be zero since one
cannot go from |φ0⟩ to |φ2⟩ with only one hopping event. For
small J > 0, however, the ground state |ψground⟩ also contains
a small O(J ) admixture of |φ1⟩ and an even smaller O(J 2) of
|φ2⟩. As one way to see this, one can exactly diagonalize
the Hamiltonian (1) for this simple case. Using the three
vectors |φ0⟩, |φ1⟩, and |φ2⟩ mentioned above as a basis for
the fully permutation-invariant subspace of the Hilbert space,
the Hamiltonian (1) can be represented by a 3 × 3 matrix of
the following form:

ĤFH =

⎛

⎝
0 −4J 0

−4J U − 4J −4J
0 −4J 2U

⎞

⎠. (5)

Diagonalization of this matrix yields the ground state (for small
but nonzero values of J )

|ψground⟩ =
(

1 − 8
J 2

U 2

)
|φ0⟩ + 4

(
J

U
+ 4

J 2

U 2

)
|φ1⟩

+ 8
J 2

U 2
|φ2⟩ + O

(
J 3

U 3

)
. (6)

E.g., if we suddenly switched off J (quantum quench), this
admixture of |φ1⟩ or |φ2⟩ contained in |ψground⟩ would then
yield the amplitude for creating one or two pairs by this
quantum quench. Analogous expressions can be derived for the
first and second excited state |ψfirst⟩ and |ψsecond⟩ containing
one and two particle-hole pairs, respectively. Now, splitting
the total time-dependent Hamiltonian (1) into an unperturbed
stationary part Ĥ0 and a time-dependent perturbation Ĥ!J via
ĤFH(t) = Ĥ0 + Ĥ!J and calculating the matrix element of the
perturbation Hamiltonian Ĥ!J between the ground state and
the highest-energy state—which corresponds to the resonant
generation of two pairs at the same time—we find that these
admixtures yield a nonzero amplitude:

⟨ψsecond|Ĥ!J |ψground⟩ = O
(

!J
J 2

U 2

)
. (7)

Of course, this simple model is of limited applicability for a
realistic lattice in a solid-state setting, but it shows that the
source term M(4)

µνλσ is nonzero, i.e., that one can create a
double particle-hole pair with ω = 2U + O(J ).

Note that the above equation (7) is valid for small J
only. For larger J , this amplitude reaches a maximum and
eventually decreases again; see Fig. 2. This double pair
creation phenomenon is enabled by the interplay of hopping J
and interaction U or, alternatively, of the correlation between
sites (due to J ) and the correlation between particles (due
to U ). Consistently, this effect vanishes both for J = 0 [see
Eq. (7)] and for U = 0 and has maximum probability for
intermediate values of J/U ; see Fig. 2. Thus, such a signal
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FIG. 2. Ratio of the probabilities for double pair creation com-
pared to single pair creation for a tetrahedron (solid black curve) as
well as fully permutationally invariant lattices with six sites (dashed
blue curve) and with eight sites (dotted red curve). The top plot
displays these probabilities as a function of arctan(J/U ) in order
to show the full range from J/U = 0 to J/U → ∞ within the
finite interval [0,π/2]. (Even though we are mostly interested in
the strongly correlated Mott regime with J ≪ U , we show full range
from J/U = 0 to J/U → ∞ in order to study the overall behavior.)
The bottom plot shows the same functions after the hopping rate
J is rescaled with the coordination number Z of the lattice (i.e.,
the number of neighbors ν for a fixed lattice site µ) via J → J/Z.
This suggests that the change in position and width of the peaks,
when going from four to eight sites, can mainly be attributed to the
increasing coordination number Z.

would be a signature of quantum correlations. Note that,
in contrast to two-photon or multiphoton effects (Floquet
theory) with the resonance condition 2ω = U + O(J ) or
nω = U + O(J ), this is a quantum effect more similar to
parametric down-conversion in quantum optics (or correlated
electron pair emission from single-photon absorption; see,
e.g., [18]) with the resonance condition ω = 2U + O(J ) or
ω = nU + O(J ).

B. Multiple pair creation

It is also possible to create three, four, or even more pairs for
ω = 3U + O(J ) or ω = 4U + O(J ), etc. However, as these
processes involve higher-order correlations—e.g., for three
pairs, one would have to consider the six-point correlator—
they are more and more suppressed. This suppression can be
observed in Figs. 2 and 3, where the scale on the ordinate
decreases by more than an order of magnitude when going
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FIG. 3. Ratio of the probabilities for triple pair creation (top)
and quadruple pair creation (bottom), both compared to single pair
creation, for fully permutationally invariant lattices with six sites
(dashed blue curve) and with eight sites (dotted red curves), again
plotted as a function of arctan(J/U ).

from second-order ω = 2U + O(J ) to third-order ω = 3U +
O(J ) and even more so for the fourth-order ω = 4U + O(J ).

In analogy to the tetrahedron, we considered fully permu-
tationally invariant lattices with six and eight sites containing
the same number of particles; see Fig. 1. Again restricting
ourselves to the fully permutationally invariant subspace of
the Hilbert space spanned by |φ0⟩ = |↑,↓,↑,↓,↑,↓⟩symm to
|φ3⟩ = |↑↓,0,↑↓,0,↑↓,0⟩symm the Hamiltonian for six sites
reads

ĤFH =

⎛

⎜⎝

0 −6J 0 0
−6J U − 8J −8J 0

0 −8J 2U − 8J −6J
0 0 −6J 3U

⎞

⎟⎠, (8)

and similarly for eight sites

ĤFH =

⎛

⎜⎜⎜⎝

0 −8J 0 0 0
−8J U−12J −12J 0 0

0 −12J 2U−16J −12J 0
0 0 −12J 3U−12J −8J
0 0 0 −8J 4U

⎞

⎟⎟⎟⎠
.

(9)

For small J , we find that the three-pair amplitudes
⟨ψthird|Ĥ!J |ψground⟩ scale with !J (J/U )4 for both Hamil-
tonians (8) and (9), while the four-pair amplitude
⟨ψfourth|Ĥ!J |ψground⟩ behaves as !J (J/U )6 for the Hamil-
tonian (9). Again, the matrix elements vanish for J = 0 and
U = 0 and display a single maximum at intermediate values
of J/U ; see Fig. 3.
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III. EXPERIMENTAL REALIZATION

We now consider a possible experimental realization of
multiple particle-hole pair creation as well as its spectroscopic
evidence, based on femtosecond time- and angle-resolved
photoemission spectroscopy (trARPES) [19,20] for which
a comprehensive theoretical treatment has been developed
in recent years [21–26]. In trARPES, the sample under
investigation is first excited using a rather intense femtosecond
optical pump pulse (see Appendix) with central frequency
ωpump and pulse duration tpump. The generated nonequilibrium
state is subsequently probed by means of direct photoemission
using a second (weak) laser pulse at a higher frequency (ωprobe,
tprobe) [27]. The overall spectral and temporal experimental
resolution is then given by the convolution of both pulses
and limited by the time-bandwidth product !ω!t ! 4 ln(2),
resulting in typical values for !t of several tens of fs and h̄!ω
of several tens of meV (Gaussian full width at half maximum).
In the strongly correlated Mott regime, these conditions allow
for a spectroscopic separation of the ground- and excited-state
signatures (separated by the gap energy of approximately
U of typically a few hundred meV) but it is challenging to
temporally resolve the full dynamics of individual or multiple
particle-hole pairs that is expected to occur on time scales
as short as h̄/J ≈ 1 fs [28]. Nevertheless, tracking the full
dynamics is not a necessary prerequisite for the effects under
discussion here and it would be a first step to observe a tem-
porally averaged signal in the corresponding energy window.

A prototypical Mott-insulator system that has been widely
investigated using trARPES (however, so far not under the
conditions proposed here) is the layered transition-metal
dichalcogenide 1T-TaS2 [29–32]. The Mott transition in this
system goes along with the formation of commensurate
charge-density wave order and a periodic lattice distortion
[33], leading to a superstructure formation with rather large
lattice spacing of ℓ = 1.23 nm in a hexagonal lattice (Z = 6)
[34]. Assuming the on-site Coulomb repulsion U ≈ 0.4 eV
and typical excitation conditions (Epump ≈ 1.4 × 108 V/m)
reported in [29,30], the relative oscillation amplitude !J/J0
would be of the order of 20% for the second resonance
ω = 2U + O(J ) (see Appendix). Furthermore, the reported
ratio J/U ≈ 0.7 [30] is favorable for multiple pair generation
since neither J nor U is very small. In this particular
system, signatures of doublon excitations were identified under
equilibrium [35,36] and nonequilibrium conditions [37] in the
spectral domain. A reasonable experimental approach to verify
the generation of multiple particle-hole pairs from the absorp-
tion of single photons would thus be to verify the systematic
appearance and disappearance of these excited-state signatures
upon changes of the resonant pumping conditions. It should,
however, be stressed that such experiments should be per-
formed in a weak excitation limit, where only minor changes
to the spectral function of the system can be expected and the
pump pulse mainly acts on the individual states population.

Similar experiments might also be considered on a material
class that exhibits the possibility to tune the relevant parame-
ters. Single C, Si, Sn, or Pb adatoms on semiconductor (111)
surfaces were shown to exhibit strong interelectronic Coulomb
interactions, leading to energy gaps between 0.5 and 1.3 eV
(Pb and C, respectively) [38–40]. The bandwidth was found to

be significantly smaller (a few tens of meV), but comparable
for all adatom systems, allowing for studies over a relatively
wide range of parameters in the deep Mott phase.

As another option for an experimental realization in a
totally different range of parameters, we would like to mention
ultracold atoms in optical lattices. Using fermionic atoms, the
Mott insulator state has recently been realized experimentally;
see, e.g., [41–43]. Since the hopping rate J is directly related
to the intensity of the laser forming the optical lattice, the
external stimulus J (t) in Eq. (2) can be realized via periodic
modulations of the laser intensity. As another option, one
could shake the lattice periodically with the frequency ω
(see the Appendix). For optical lattices, it would even be
possible to detect the number of created doublon-holon pairs
via site-resolved imaging techniques; see [43]. With ultracold
atoms, it is also possible to realize the bosonic version of
Eq. (1), the Bose-Hubbard model, where one would expect
analogous effects [44,45].

IV. CONCLUSIONS AND OUTLOOK

We studied the Fermi-Hubbard model (1) deep in the
strongly correlated Mott phase under the influence of an
oscillating hopping rate (2). In addition to the well-known
fundamental resonance ω = U + O(J ), we find higher reso-
nances at ω = 2U + O(J ) and 3U + O(J ) and so on, which
correspond to the creation of multiple particle-hole pairs. This
multiple pair creation effect is caused by the interplay between
the correlations between particles (due to U ) on the one hand
and the correlations between lattice sites (due to J ) on the
other hand. Thus it is a genuine signature of these nontrivial
correlations.

Consistent with this picture, we found that triple pair
creation ω = 3U + O(J ) is more suppressed than double
pair creation ω = 2U + O(J ) while the creation of four pairs
ω = 4U + O(J ) is even more suppressed; see Figs. 2 and 3.
We attribute this behavior to the hierarchy of correlations,
i.e., the fact that—at least in the absence of symmetry
breaking—the correlations between three lattices sites are
typically smaller than the correlations between two sites and
so on; see, e.g., [9,10,15–17]. However, further investigations
are necessary to understand this effect better [44].

We also discussed experimental parameters which show
that this effect should be observable in time domain experi-
ments investigating solid states or ultracold atoms in optical
lattices. Note that the multiple pair creation effect considered
here is different from charge carrier multiplication such as
impact ionization; see, e.g., [49], where an excitation generates
further particle-hole pairs after its creation. In contrast, the
effect considered here describes the generation of multiple
pairs simultaneously by one and the same pump photon.

Interestingly, for the Fermi-Hubbard model on a square
(instead of a tetrahedron; cf. Fig. 1), we do not find this multiple
pair-creation effect—at least not in the fully symmetric sub-
space. Whether this is a result of these symmetries, the reduced
coordination number Z (two instead of three), or the bipartite
structure of the square which facilitates antiferromagnetic
Néel ordering of the spins should be clarified in future
investigations. Note that, after taking the Coulomb interactions
between different lattice sites into account (in the extended
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Fermi-Hubbard model), we get double pair creation (similar
to Auger processes) also on a square [44].

In summary, we find that the dynamics of strongly corre-
lated quantum many-body systems is still not fully understood
and can afford surprises, which motivates further studies.
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APPENDIX: PUMP PULSE

Let us briefly discuss the impact of a pump laser on the
Fermi-Hubbard model (1) and show how it corresponds to the
oscillating hopping rate (2). For simplicity, we consider the
Fermi-Hubbard model in one dimension:

Ĥ 1D
FH = −J

∑

µ,s

(ĉ†µ,s ĉµ+1,s + H.c.) + U
∑

µ

n̂↑
µn̂↓

µ. (A1)

In higher dimensions, additional factors can play a role (such
as the direction of hopping relative to the polarization of the
pump laser) but the main effect remains the same. Neglecting
the magnetic component of the pump laser, the most obvious
impact of the pump field (others will be discussed below) is
a time-dependent shift of the energies corresponding to the
Hamiltonian

Ĥpump(t) =
∑

µ

(n̂↑
µ + n̂↓

µ)Vµ(t). (A2)

Such Hamiltonians are often discussed in the context of driven
quantum lattice systems. Assuming that the typical laser wave
numbers k

∥
laser parallel to the lattice are small compared to the

other relevant scales, the site-dependent energy shift Vµ(t) ≈
−qrµ · E(t) at the position rµ of the site µ is determined by the
electric pump field E(t) with q being the elementary charge.
This Hamiltonian (A2) generates the Peierls transformation

ĉµ,s(t) → ĉµ,s(t)eiϕµ(t), (A3)

with the time-dependent phase ϕ̇µ(t) = Vµ(t). Inserting this
transformation back into Eq. (1), we find that the tunneling
term ∝ J acquires an oscillating phase

J → J (t) = J0e
i!ϕ(t), (A4)

where !ϕ(t) denotes the relative phase difference between
neighboring lattice sites.

Assuming a harmonically oscillating time dependence, we
may insert E∥(t) = E∥ cos(ωt) and obtain

!ϕ(t) = qℓE∥ sin(ωt)
ω

= !ϕmax sin(ωt), (A5)

with the lattice spacing ℓ.

1. Effective quantum quench

If the pump frequency ω is much larger than all the other
relevant energy scales such as J and U , the main consequence
of the time dependence [Eq. (A4)] is that the original hopping

rate J in the Hamiltonian (A1) can effectively be replaced by
the time-averaged hopping rate J̄ . For a harmonic oscillation,
we may calculate the time average via the Jacobi-Anger
expansion and obtain

J̄ = J0ei!ϕ(t) = J0J0(!ϕmax), (A6)

where J0 denotes the Bessel function of the first kind. Since
|J0| " 1, the effective time-averaged hopping rate is lowered
by the pump beam. For certain values of !ϕmax such as
!ϕ0

max ≈ 2.4, one may even effectively inhibit hopping due to
J0(!ϕ0

max) = 0. Thus, if we would switch on (or off) the pump
beam sufficiently quickly, i.e., faster than the characteristic
response time of our system, the situation would be very
analogous to a quantum quench as discussed in [3,4,6–10],
for example. As shown in these papers, such a quench
will create particle-hole (doublon-holon) pairs in general—
the number (density) of those pairs will depend on the
parameters such as U and the initial Jin and final Jout hopping
rates.

If the pump field E is weak enough such that the phase
!ϕmax ≪ 1 is small, a Taylor expansion gives

J̄ ≈ J0
(
1 − 1

2 !ϕ2(t)
)

= J0
(
1 − 1

4 !ϕ2
max

)
. (A7)

In this case, the change of the hopping rate is relatively small
!J̄ = −J0!ϕ2

max/4 and thus we may employ time-dependent
perturbation theory where the perturbation Hamiltonian is
governed by !J̄ . As the perturbation Hamiltonian scales
quadratically in !ϕ ≪ 1 and thus linearly in the pump
intensity Ipump ∝ E2

pump, the probability for pair creation (per
unit length) would be suppressed as the fourth power of
!ϕ ≪ 1, i.e., it would scale quadratically in the pump intensity
P ∝ E4 ∝ I 2. This scaling could help to distinguish the above
quench mechanism from other effects such as linear dipole-
type transitions (which scale linearly in I , for example). On
the other hand, the scaling indicates that this is a second-order
effect, which is typically suppressed in comparison to potential
competing first-order effects.

2. Resonant excitations

Such first-order effects arise when the pump frequency
ω is not much larger than all other energy scales, which is
the scenario considered in this paper. In this case, a Taylor
expansion of Eq. (A4) reproduces Eq. (2) to first order.

One should also keep in mind that the Hamiltonian (A2)
only contains the component of the electric field parallel to the
lattice—while the perpendicular component can also induce
effects such as the deformation of wave functions leading to
variations of J and U , i.e., it can also cause small oscillations
in J and U . However, assuming that the initial state is the
ground state (i.e., an eigenstate) of the Hamiltonian (A1), the
perturbation caused by a small variation of U (t) is equivalent
(to lowest order) to the perturbation caused by an appropriate
small variation of J (t).

In higher-dimensional lattices, !J (t) can also depend on
the lattice indices !Jµν(t), e.g., on the direction relative to
the pump beam, but we omit this dependence for simplicity
here. More generally, repeating the steps of the derivation
of the Fermi-Hubbard Hamiltonian (1) from the underlying
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many-body Hamiltonian (including the Coulomb interaction)
in the presence of the pump field, one would also obtain

oscillating terms like ĉ
†
µ,s ĉ

†
ν,s ′Wss ′

µνλσ (t)ĉλ,s ĉσ,s ′ , but we do not
consider these contributions here.
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